Publications by authors named "J Polz"

We report on the successful implementation and characterization of a cryogenic solid hydrogen target in experiments on high-power laser-driven proton acceleration. When irradiating a solid hydrogen filament of 10 μm diameter with 10-Terawatt laser pulses of 2.5 J energy, protons with kinetic energies in excess of 20 MeV exhibiting non-thermal features in their spectrum were observed.

View Article and Find Full Text PDF
Article Synopsis
  • The Polaris laser system, a fully diode-pumped chirped-pulse amplification laser, achieved maximum energy pulses of 54.2 J before compression, with a spectral bandwidth of 18 nm at a wavelength of 1033 nm.
  • Despite restrictions from the vacuum compressor, compressed pulses were achieved at 98 fs duration with an energy of 16.7 J, resulting in a peak power of 170 TW.
  • The laser pulses exhibit an ultra-high temporal contrast, making them ideal for high-intensity laser-matter experiments.
View Article and Find Full Text PDF

Donor CD4(+)Foxp3(+) regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT [allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology.

View Article and Find Full Text PDF

TNF and TNF receptor type 2 (TNFR2) have been shown to be important for generation of myeloid-derived suppressor cells (MDSC). In order to analyze whether and how TNFR2 passes the effect of TNF on, myeloid cells from TNFR2-deficient mice were compared to respective cells from wild-type mice. Primary TNFR2-deficient myeloid cells showed reduced production of NO and IL-6 which was attributable to CD11b(+) CD11c(-) Ly6C(+) Ly6G(-) immature monocytic MDSC.

View Article and Find Full Text PDF

Sepsis-induced immune reactions are reduced in TNF receptor 2 (TNFR2)-deficient mice as previously shown. In order to elucidate the underlying mechanisms, the functional integrity of myeloid cells of TNFR2-deficient mice was analyzed and compared to wild type (WT) mice. The capacity of dendritic cells to produce IL-12 was strongly impaired in TNF-deficient mice, mirroring impaired production of IL-12 by WT dendritic cells in sepsis or after LPS or TNF pre-treatment.

View Article and Find Full Text PDF