Mol Plant Microbe Interact
December 2017
The functional role of the periplasm of nitrogen-fixing bacteroids has not been determined. Proteins were isolated from the periplasm and cytoplasm of Bradyrhizobium diazoefficiens bacteroids and were analyzed using liquid chromatography tandem mass spectrometry proteomics. Identification of bacteroid periplasmic proteins was aided by periplasm prediction programs.
View Article and Find Full Text PDFUrease catalyzes the hydrolysis of urea to ammonia and carbon dioxide. The ammonia (nitrogen (N) product of urease activity) is incorporated into organic compounds. Thus, urease is involved in N remobilization, as well as in primary N assimilation.
View Article and Find Full Text PDFNickel (Ni) availability in soil varies as a function of pH. Plants require Ni in small quantities for normal development, especially in legumes due its role in nitrogen (N) metabolism. This study investigated the effect of soil base saturation, and Ni amendments on Ni uptake, N accumulation in the leaves and grains, as well as to evaluate organic acids changes in soybean.
View Article and Find Full Text PDFThe element Ni is considered an essential plant micronutrient because it acts as an activator of the enzyme urease. Recent studies have shown that Ni may activate an isoform of glyoxalase I, which performs an important step in the degradation of methylglyoxal (MG), a potent cytotoxic compound naturally produced by cellular metabolism. Reduced glutathione (GSH) is consumed and regenerated in the process of detoxification of MG, which is produced during stress (stress-induced production).
View Article and Find Full Text PDFUreases are abundant in plants, bacteria, and in the soil, but their role in signaling between soybean and soil microorganisms has not been investigated. The bacterium Bradyrhizobium japonicum forms nitrogen-fixing nodules on soybean roots. Here, we evaluated the role(s) of ureases in the process of soybean nodulation.
View Article and Find Full Text PDF