Ependymal cells (ECs) are multiciliated cells in the brain that contribute to cerebrospinal fluid flow. ECs are specified during embryonic stages but differentiate later in development. Their differentiation depends on genes such as GEMC1 and MCIDAS in conjunction with E2F4/5 as well as on cell-cycle-related factors.
View Article and Find Full Text PDFMany cell movements and shape changes and certain types of intracellular bacterial and organelle motility are driven by the biopolymer actin that forms a dynamic network at the surface of the cell, organelle, or bacterium. The biochemical and mechanical basis of force production during this process can be studied by reproducing actin-based movement in an acellular manner on inert surfaces such as beads that are functionalized and incubated with a controlled set of components. Under the appropriate conditions, an elastic actin network assembles at the bead surface and breaks open due to the stress generated by network growth, forming an "actin comet" that propels the bead forward.
View Article and Find Full Text PDFAsymmetric cell division is an essential feature of normal development and certain pathologies. The process and its regulation have been studied extensively in the Caenorhabditis elegans embryo, particularly how symmetry of the actomyosin cortical cytoskeleton is broken by a sperm-derived signal at fertilization, upstream of polarity establishment. Diploscapter pachys is the closest parthenogenetic relative to C.
View Article and Find Full Text PDFBackground: Benign prostatic hyperplasia (BPH), a progressive condition and common cause of lower urinary tract symptoms (LUTS), is underdiagnosed in primary care, impacting patient outcomes. Here, we evaluate the utility of a BPH screening tool in general practice, to identify men confirmed to have BPH after urologist assessment of diagnostic test results.
Methods: A 3-item questionnaire was developed to discriminate between LUTS due to BPH versus other conditions and was translated and validated cross-culturally.
Heterodimeric capping protein (CP) binds the rapidly growing barbed ends of actin filaments and prevents the addition (or loss) of subunits. Capping activity is generally considered to be essential for actin-based motility induced by Arp2/3 complex nucleation. By stopping barbed end growth, CP favors nucleation of daughter filaments at the functionalized surface where the Arp2/3 complex is activated, thus creating polarized network growth, which is necessary for movement.
View Article and Find Full Text PDF