The high variability characteristic of short tandem repeat (STR) markers is harnessed for human identification in forensic genetic analyses. Despite the power and reliability of current typing techniques, sequence-level information both within and around STRs are masked in the length-based profiles generated. Forensic STR typing using next generation sequencing (NGS) has therefore gained attention as an alternative to traditional capillary electrophoresis (CE) approaches.
View Article and Find Full Text PDFBackground: Multi-locus genotype data are widely used in population genetics and disease studies. In evaluating the utility of multi-locus data, the independence of markers is commonly considered in many genomic assessments. Generally, pairwise non-random associations are tested by linkage disequilibrium; however, the dependence of one panel might be triplet, quartet, or other.
View Article and Find Full Text PDFAncestry informative single nucleotide polymorphisms (SNPs) can identify biogeographic ancestry (BGA); however, population substructure and relatively recent admixture can make differentiation difficult in heterogeneous Hispanic populations. Utilizing unrelated individuals from the Genomic Origins and Admixture in Latinos dataset (GOAL, n = 160), we designed an 80 SNP panel (Setser80) that accurately depicts BGA through STRUCTURE and PCA. We compared our Setser80 to the Seldin and Kidd panels via resampling simulations, which models data based on allele frequencies.
View Article and Find Full Text PDFAdvancements in DNA sequencing technologies are occurring at a rapid rate. Various platforms have proven useful in all aspects of health and science research, from molecular diagnostics in cancer research to spore identification in bioterrorism. In the field of forensics, one particular single-molecule sequencing platform shows promise for becoming a viable solution for small to midsize forensic laboratories.
View Article and Find Full Text PDFTraditional approaches for interrogating the mitochondrial genome often involve laborious extraction and enrichment protocols followed by Sanger sequencing. Although preparation techniques are still demanding, the advent of next-generation or massively parallel sequencing has made it possible to routinely obtain nucleotide-level data with relative ease. These short-read sequencing platforms offer deep coverage with unparalleled read accuracy in high-complexity genomic regions but encounter numerous difficulties in the low-complexity homopolymeric sequences characteristic of the mitochondrial genome.
View Article and Find Full Text PDF