Publications by authors named "J Pipek"

Semi-insulating CdTe and CdZnTe crystals fabricated into pixelated sensors and integrated into radiation detection modules have demonstrated a remarkable ability to operate under rapidly changing X-ray irradiation environments. Such challenging conditions are required by all photon-counting-based applications, including medical computed tomography (CT), airport scanners, and non-destructive testing (NDT). Although, maximum flux rates and operating conditions differ in each case.

View Article and Find Full Text PDF

Halide perovskites have undergone remarkable developments as highly efficient optoelectronic materials for a variety of applications. Several studies indicated the critical role of defects on the performance of perovskite devices. However, the parameters of defects and their interplay with free charge carriers remain unclear.

View Article and Find Full Text PDF

The Time-of-Flight (TOF) technique coupled with semiconductorlike detectors, as silicon carbide and diamond, is one of the most promising diagnostic methods for high-energy, high repetition rate, laser-accelerated ions allowing a full on-line beam spectral characterization. A new analysis method for reconstructing the energy spectrum of high-energy laser-driven ion beams from TOF signals is hereby presented and discussed. The proposed method takes into account the detector's working principle, through the accurate calculation of the energy loss in the detector active layer, using Monte Carlo simulations.

View Article and Find Full Text PDF

Colonoscopy is the standard device for diagnosing colorectal cancer, which develops from little lesions on the bowel wall called polyps. The Rényi entropies-based structural entropy and spatial filling factor are two scale- and resolution-independent quantities that characterize the shape of a probability distribution with the help of characteristic curves of the structural entropy-spatial filling factor map. This alternative definition of structural entropy is easy to calculate, independent of the image resolution, and does not require the calculation of neighbor statistics, unlike the other graph-based structural entropies.

View Article and Find Full Text PDF

Purpose: The Geant4 Monte Carlo simulation toolkit was used to reproduce radiobiological parameters measured by irradiating three different cancerous cell lines with monochromatic and clinical proton beams.

Methods: The experimental set-up adopted for irradiations was fully simulated with a dedicated open-source Geant4 application. Cells survival fractions was calculated coupling the Geant4 simulations with two analytical radiobiological models: one based on the LEM (Local Effect Model) approach and the other on a semi-empirical parameterisation.

View Article and Find Full Text PDF