Multifunctional composites that couple high-capacity adsorbents with catalytic nanoparticles (NPs) offer a promising route toward the degradation of organophosphorus pollutants or chemical warfare agents (CWAs). We couple mesoporous TiO aerogels with plasmonic Cu nanoparticles (Cu/TiO) and characterize the degradation of the organophosphorus CWA sarin under both dark and illuminated conditions. Cu/TiO aerogels combine high dark degradation rates, which are facilitated by hydrolytically active sites at the Cu||TiO interface, with photoenhanced degradation courtesy of semiconducting TiO and the surface plasmon resonance (SPR) of the Cu nanoparticles.
View Article and Find Full Text PDFAssessments of ecosystem service and function losses of wetlandscapes (i.e., wetlands and their hydrological catchments) suffer from knowledge gaps regarding impacts of ongoing hydro-climatic change.
View Article and Find Full Text PDFPhotodeposition of Cu nanoparticles on ceria (CeO) aerogels generates a high surface area composite material with sufficient metallic Cu to exhibit an air-stable surface plasmon resonance. We show that balancing the surface area of the aerogel support with the Cu weight loading is a critical factor in retaining stable Cu. At higher Cu weight loadings or with a lower support surface area, Cu aggregation is observed by scanning and transmission electron microscopy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
We describe the opportunity to deploy aerogels-an ultraporous nanoarchitecture with co-continuous networks of meso/macropores and covalently bonded nanoparticulates-as a platform to address the nature of the electronic, ionic, and mass transport that underlies catalytic activity. As a test case, we fabricated Au||TiO junctions in composite guest-host aerogels in which ∼5 nm Au nanoparticles are incorporated either directly into the anatase TiO network (Au "in" TiO, Au-TiO aerogel) or deposited onto preformed TiO aerogel (Au "on" TiO, Au/TiO aerogel). The metal-meets-oxide nanoscale interphase as visualized by electron tomography feature extended three-dimensional (3D) interfaces, but Au-TiO aerogels impose a greater degree of Au contact with TiO particles than does the Au/TiO form.
View Article and Find Full Text PDF