One-third of protein domains in the CATH database contain a recently discovered tertiary topological motif: non-covalent lasso entanglements, in which a segment of the protein backbone forms a loop closed by non-covalent interactions between residues and is threaded one or more times by the N- or C-terminal backbone segment. Unknown is how frequently this structural motif appears across the proteomes of organisms. And the correlation of these motifs with various classes of protein function and biological processes have not been quantified.
View Article and Find Full Text PDFA hydrogen atom can either physisorb or chemisorb onto a graphene surface. To describe the interaction of H with graphene, we trained the C-C, H-H, and C-H interactions of the ReaxFF CHO bond order potential to reproduce Density Functional Theory (DFT) generated values of graphene cohesive energy and lattice constant, H dissociation energy, H on graphene adsorption potentials, and H formation on graphene using the Eley-Rideal (ER) and Langmuir-Hinshelwood (LH) processes. The results, generated from the trained H-graphene potentials, are in close agreement with the corresponding results from DFT.
View Article and Find Full Text PDFThis is a report on a study of the adsorption characteristics of ethane on aggregates of unopened dahlia-like carbon nanohorns. This sorbent presents two main groups of adsorption sites: the outside surface of individual nanohorns and deep, interstitial spaces between neighbouring nanohorns towards the interior of the aggregates. We have explored the equilibrium properties of the adsorbed ethane films by determining the adsorption isotherms and isosteric heat of adsorption.
View Article and Find Full Text PDF