Protein synthesis is central to life and requires the ribosome, which catalyzes the stepwise addition of amino acids to a polypeptide chain by undergoing a sequence of structural transformations. Here, we employed high-resolution template matching (HRTM) on cryoelectron microscopy (cryo-EM) images of directly cryofixed living cells to obtain a set of ribosomal configurations covering the entire elongation cycle, with each configuration occurring at its native abundance. HRTM's position and orientation precision and ability to detect small targets (∼300 kDa) made it possible to order these configurations along the reaction coordinate and to reconstruct molecular features of any configuration along the elongation cycle.
View Article and Find Full Text PDFWe present an approach to study macromolecular assemblies by detecting component proteins' characteristic high-resolution projection patterns, calculated from their known 3D structures, in single electron cryo-micrographs. Our method detects single apoferritin molecules in vitreous ice with high specificity and determines their orientation and location precisely. Simulations show that high spatial-frequency information and-in the presence of protein background-a whitening filter are essential for optimal detection, in particular for images taken far from focus.
View Article and Find Full Text PDFLinking neural microcircuit function to emergent properties of the mammalian brain requires fine-scale manipulation and measurement of neural activity during behavior, where each neuron's coding and dynamics can be characterized. We developed an optical method for simultaneous cellular-resolution stimulation and large-scale recording of neuronal activity in behaving mice. Dual-wavelength two-photon excitation allowed largely independent functional imaging with a green fluorescent calcium sensor (GCaMP3, λ = 920 ± 6 nm) and single-neuron photostimulation with a red-shifted optogenetic probe (C1V1, λ = 1,064 ± 6 nm) in neurons coexpressing the two proteins.
View Article and Find Full Text PDFWe demonstrate that channelrhodopsin-2 (CR), a light-gated ion channel that is conventionally activated by using visible-light excitation, can also be activated by using IR two-photon excitation (TPE). An empirical estimate of CR's two-photon absorption cross-section at lambda = 920 nm is presented, with a value (260 +/- 20 GM) indicating that TPE stimulation of CR photocurrents is not typically limited by intrinsic molecular excitability [1 GM = 10(-50)(cm4 s)/photon]. By using direct physiological measurements of CR photocurrents and a model of ground-state depletion, we evaluate how saturation of CR's current-conducting state influences the spatial resolution of focused TPE photostimulation, and how photocurrents stimulated by using low-power scanning TPE temporally summate.
View Article and Find Full Text PDFMolecular motors drive genome packaging into preformed procapsids in many double-stranded (ds)DNA viruses. Here, we present optical tweezers measurements of single DNA molecule packaging in bacteriophage lambda. DNA-gpA-gpNu1 complexes were assembled with recombinant gpA and gpNu1 proteins and tethered to microspheres, and procapsids were attached to separate microspheres.
View Article and Find Full Text PDF