Tankyrase 1 and 2 are ADP-ribosyltransferases that catalyze formation of polyADP-Ribose (PAR) onto themselves and their binding partners. Tankyrase protein levels are regulated by the PAR-binding E3 ligase RNF146, which promotes K48-linked polyubiquitylation and proteasomal degradation of tankyrase and its partners. We identified a novel interaction between tankyrase and a distinct class of E3 ligases: the RING-UIM (Ubiquitin-Interacting Motif) family.
View Article and Find Full Text PDFTankyrase 1 and 2 are ADP-ribosyltransferases that use NAD as a substrate to catalyze polyADP-Ribose (PAR) onto themselves and their protein binding partners. Tankyrases have diverse cellular functions, ranging from resolution of telomere cohesion to activation of the Wnt/β-catenin signaling pathway. Robust and specific small molecule tankyrase inhibitors have been developed and are being investigated for cancer therapies.
View Article and Find Full Text PDFCD11c macrophages/dendritic cells (MDCs) are increased and display the classically activated M1-like phenotype in obese adipose tissue (AT) and may contribute to AT inflammation and insulin resistance. Stat1 is a key transcription factor for MDC polarization into the M1-like phenotype. Here, we examined the role of Stat1 in obesity-induced AT MDC polarization and inflammation and insulin resistance using mice with specific knockout of Stat1 in MDCs (cKO).
View Article and Find Full Text PDFHPV16 is the most carcinogenic human papillomavirus and causes >50% of cervical cancers, the majority of anal cancers and 30% of oropharyngeal squamous cell carcinomas. HPV carcinogenesis relies on the continuous expression of the two main viral oncoproteins E6 and E7 that target >150 cellular proteins. Among them, epigenetic modifiers, including DNA Methyl Transferases (DNMT), are dysregulated, promoting an aberrant methylation pattern in HPV-positive cancer cells.
View Article and Find Full Text PDFHigh-risk Human Papillomavirus infections are responsible for anogenital and oropharyngeal cancers. Alternative splicing is an important mechanism controlling HPV16 gene expression. Modulation in the splice pattern leads to polycistronic HPV16 early transcripts encoding a full length E6 oncoprotein or truncated E6 proteins, commonly named E6*.
View Article and Find Full Text PDF