Streamlining the xylene separation process on faujasites is a promising way to design innovative adsorbents for this application. For this purpose, we present herein an original quantitative structure-property relationship (QSPR) approach. It deals with the development of a multi-linear predictive model correlating the separation properties with a set of structural descriptors for the adsorbents.
View Article and Find Full Text PDFWe propose a method for analytically predicting single-component adsorption isotherms from molecular, microscopic and structural descriptors of the adsorbate-adsorbent system and concepts of statistical thermodynamics. Expressions for Henry's constant and the heat of adsorption at zero coverage are derived. These functions depend on the pore size, pore shape, chemical composition, and density of the adsorbent material.
View Article and Find Full Text PDFThe confinement effect plays a key role in physisorption in microporous materials and many other systems. Confinement is related to the relationship between the pore geometry (pore size and topology) and the geometry of the adsorbed molecule. Geometric properties of the porous solid can be described using the concepts of Gaussian and mean curvatures.
View Article and Find Full Text PDFWe propose a new transferable force field to simulate phase equilibrium and interfacial properties of systems involving ethers and glycol ethers. On the basis of the anisotropic united-atom force field, only one new group is introduced: the ether oxygen atom. The optimized Lennard-Jones (LJ) parameters of this atom are identical whatever the molecule simulated (linear ether, branched ether, cyclic ether, aromatic ether, diether, or glycol ether).
View Article and Find Full Text PDF