Publications by authors named "J Penninger"

Article Synopsis
  • - During pregnancy and lactation, mammals experience significant changes in their intestinal epithelium, leading to an increase in intestinal surface area through the expansion of villi.
  • - The RANK-RANKL molecular pathway is crucial for this process, protecting gut cells from death and promoting intestinal stem cell activity, which results in villous elongation.
  • - Mice lacking RANK in their intestinal epithelium have offspring that are heavier and more prone to glucose intolerance, highlighting the importance of RANK-RANKL in both immediate and long-term health outcomes for offspring.
View Article and Find Full Text PDF

N-glycosylation is one of the most common protein modifications in eukaryotes, with immense importance at the molecular, cellular, and organismal level. Accurate and reliable N-glycan analysis is essential to obtain a systems-wide understanding of fundamental biological processes. Due to the structural complexity of glycans, their analysis is still highly challenging.

View Article and Find Full Text PDF

Cerebral cavernous malformations (CCMs) are anomalies of the cerebral vasculature. Loss of the CCM proteins CCM1/KRIT1, CCM2, or CCM3/PDCD10 trigger a MAPK-Krüppel-like factor 2 (KLF2) signaling cascade, which induces a pathophysiological pattern of gene expression. The downstream target genes that are activated by KLF2 are mostly unknown.

View Article and Find Full Text PDF

Unlike adult mammals, the hearts of neonatal mice possess the ability to completely regenerate from myocardial infarction (MI). This observation has sparked vast interest in deciphering the potentially lifesaving and morbidity-reducing mechanisms involved in neonatal cardiac regeneration. In mice, the regenerative potential is lost within the first week of life and coincides with a reduction of Insulin-like growth factor 1 receptor (Igf1r) expression in the heart.

View Article and Find Full Text PDF

Organoids are self-organizing 3D cell culture models that are valuable for studying the mechanisms underlying both development and disease in multiple species, particularly, in humans. These 3D engineered tissues can mimic the structure and function of human organs in vitro. Methods to generate organoids have substantially improved to better resemble, in various ways, their in vivo counterpart.

View Article and Find Full Text PDF