We analyze offshore wind speeds with a time resolution of one second over a long period of 20 months for different heights above the sea level. Energy spectra extending over more than seven decades give a comprehensive picture of wind fluctuations, including intermittency effects at small length scales and synoptic weather phenomena at large scales. The spectra S(f) show a scaling behavior consistent with three-dimensional turbulence at high frequencies f, followed by a regime at lower frequencies, where fS(f) varies weakly.
View Article and Find Full Text PDFProcesses leading to anomalous fluctuations in turbulent flows, referred to as intermittency, are still challenging. We consider cascade trajectories through scales as realizations of a stochastic Langevin process for which multiplicative noise is an intrinsic feature of the turbulent state. The trajectories are conditioned on their entropy exchange.
View Article and Find Full Text PDFGenerating laboratory flows resembling atmospheric turbulence is of prime importance to study the effect of wind fluctuations on objects such as buildings, vehicles, or wind turbines. A novel driving of an active grid following a stochastic process is used to generate velocity fluctuations with correlation lengths, and, thus, integral scales, much larger than the transverse dimension of the wind tunnel. The combined action of the active grid and a modulation of the fan speed allows one to generate a flow characterized by a four-decade inertial range and an integral scale Reynolds number of 2×10^{7}.
View Article and Find Full Text PDFComplex systems are omnipresent and play a vital role in in our every-day lives. Adverse behavior of such systems has generated considerable interest in being able to control complex systems modeled as networks. Here, we propose a topology-dynamics-based approach for controlling complex systems modeled as networks of coupled multi-dimensional dynamical entities.
View Article and Find Full Text PDFStochastic feed-in of fluctuating renewable energies is steadily increasing in modern electricity grids, and this becomes an important risk factor for maintaining power grid stability. Here, we study the impact of wind power feed-in on the short-term frequency fluctuations in power grids based on an Institute of Electrical and Electronics Engineers test grid structure, the swing equation for the dynamics of voltage phase angles, and a series of measured wind speed data. External control measures are accounted for by adjusting the grid state to the average power feed-in on a time scale of 1 min.
View Article and Find Full Text PDF