Maintaining tightly copper homeostasis is crucial for the survival of all living organisms, in particular microorganisms like bacteria. They have evolved a number of proteins to capture, transport and deliver Cu(I), while avoiding Fenton-like reactions. Some Cu proteins exhibit methionine-rich (Met-rich) domains, whose role remains elusive.
View Article and Find Full Text PDFCorrection for 'Bio-inspired copper complexes with CuS cores: (solvent) effects on oxygen reduction reactions' by Jordan Mangue , , 2024, , 15576-15582, https://doi.org/10.1039/D4DT01629G.
View Article and Find Full Text PDFThe need for effective alternative energy sources and "green" industrial processes is a more crucial societal topic than ever. In this context, mastering oxygen reduction reactions (ORRs) is a key step to develop fuel cells or to propose alternatives to energy-intensive setups such as the anthraquinone process for hydrogen peroxide production. Achieving this goal using bio-inspired metal complexes based on abundant and non-toxic elements could provide an environmentally friendly option.
View Article and Find Full Text PDFWe present here the most active synthetic Ni superoxide dismutase (NiSOD) mimic reported to date. Reactive oxygen species are aggressive compounds, which concentrations are tightly regulated in vivo. Among them, the superoxide anion, O⋅, is controlled by superoxide dismutases.
View Article and Find Full Text PDFWe present the simple synthesis of a star-shape non-fullerene acceptor (NFA) for application in organic solar cells. This NFA possesses a D(A) structure in which the electron-donating core is an aza-triangulene unit and we report the first crystal structure for a star shape NFA based on this motive. We fully characterized this molecule's optoelectronic properties in solution and thin films, investigating its photovoltaic properties when blended with PTB7-Th as the electron donor component.
View Article and Find Full Text PDF