Identifying pharmacological probes for human proteins represents a key opportunity to accelerate the discovery of new therapeutics. High-content screening approaches to expand the ligandable proteome offer the potential to expedite the discovery of novel chemical probes to study protein function. Screening libraries of reactive fragments by chemoproteomics offers a compelling approach to ligand discovery, however, optimising sample throughput, proteomic depth, and data reproducibility remains a key challenge.
View Article and Find Full Text PDFIntroduction: Mental illness stigma can result in discriminative practice in pharmacy, such as providing less pharmaceutical care to people living with mental illness (PMI) than those with physical illness. Pharmacy education should aim to reduce the impact of mental illness stigma on the pharmaceutical care of PMI. Whilst previous research has shown that some interventions can reduce stereotyping and prejudice in pharmacy students, the impact on subsequent discrimination is questionable and the reasons for successful and unsuccessful outcomes are unclear.
View Article and Find Full Text PDFReactive fragment (RF) screening has emerged as an efficient method for ligand discovery across the proteome, irrespective of a target's perceived tractability. To date, however, the efficiency of subsequent optimisation campaigns has largely been low-throughput, constrained by the need for synthesis and purification of target compounds. We report an efficient platform for 'direct-to-biology' (D2B) screening of cysteine-targeting chloroacetamide RFs, wherein synthesis is performed in 384-well plates allowing direct assessment in downstream biological assays without purification.
View Article and Find Full Text PDFBackground: Studies have linked a lack of dietary fibre, including resistant starch (RS), to disease-associated changes in intestinal bacteria. Healthy people often report abnormal bowel symptoms (ABS), including bloating, constipation, abdominal pain, and diarrhea, however, connections between these symptoms and the gut microbiota are poorly understood. Determining correlations between ABS and taxonomic groups may provide predictive value for using prebiotics to mitigate ABS in combination with stool microbiome testing.
View Article and Find Full Text PDF