The kidney's inherent complexity has made identifying cell-specific pathways challenging, particularly when temporally associating them with the dynamic pathophysiology of acute kidney injury (AKI). Here, we combine renal cell-specific luciferase reporter mice using a chemoselective luciferin to guide the acquisition of cell-specific transcriptional changes in C57BL/6 background mice. Hydrogen peroxide generation, a common mechanism of tissue damage, was tracked using a peroxy-caged-luciferin to identify optimum time points for immunoprecipitation of labeled ribosomes for RNA-sequencing.
View Article and Find Full Text PDFThe potential protection of poly-ICLC (Hiltonol) a double stranded RNA (dsRNA) against EBOV infection was assessed with prophylactic and therapeutic administration to wild type and TLR3-negative mice, and in non-human primates (NHPs) by measuring EBOL serum titers, survival extension, and serum liver and kidney function markers. Various doses of aqueous and liposomal poly-ICLC monotherapy provided robust protection in otherwise lethal murine EBOV challenge models, when treatment is started on the day 0 or one day after virus challenge. There was no advantage of liposomal vs.
View Article and Find Full Text PDFThe fields of science have undergone dramatic reorganizations as they have come to terms with the realities of the growing complexities of their problem set, the costs, and the breadth of skills needed to make major progress. A field such as particle physics transformed from principal investigator-driven research supported by an electron synchrotron in the basement of your physics building in the 1950s, to regional centers when costs became prohibitive to refresh technology everywhere, driving larger teams of scientists to cooperate in the 1970s, to international centers where multinational teams work together to achieve progress. The 2013 Nobel Prize winning discovery of the Higgs boson would have been unlikely without such team science.
View Article and Find Full Text PDFTranslating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, "organotypic" cell cultures, which mimic functional responses of living tissue.
View Article and Find Full Text PDF