Publications by authors named "J Palis"

Tubular aggregate myopathy (TAM) is a heritable myopathy primarily characterized by progressive muscle weakness, elevated levels of creatine kinase (CK), hypocalcemia, exercise intolerance, and the presence of tubular aggregates (TAs). Here, we generated a knock-in mouse model based on a human gain-of-function mutation which results in a severe, early-onset form of TAM, by inducing a glycine-to-serine point mutation in the ORAI1 pore (Orai1 or GS mice). By 8 months of age, GS mice exhibited significant muscle weakness, exercise intolerance, elevated CK levels, hypocalcemia, and robust TA presence.

View Article and Find Full Text PDF

Lung megakaryocytes (Mks) are largely extravascular with an immune phenotype (1). Because bone marrow (BM) Mks are short lived, it has been assumed that extravascular lung Mks are constantly "seeded" from the BM. To investigate lung Mk origins and how origin affects their functions, we developed methods to specifically label lung Mks using CFSE dye and biotin delivered via the oropharyngeal route.

View Article and Find Full Text PDF

Red blood cells (RBCs) comprise a critical component of the cardiovascular network, which constitutes the first functional organ system of the developing mammalian embryo. Examination of circulating blood cells in mammalian embryos revealed two distinct types of erythroid cells: large, nucleated "primitive" erythroblasts followed by smaller, enucleated "definitive" erythrocytes. This review describes the current understanding of primitive and definitive erythropoiesis gleaned from studies of mouse and human embryos and induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

Purpose Of Review: In this review, we present an overview of recent studies of primitive erythropoiesis, focusing on advances in deciphering its embryonic origin, defining species-specific differences in its developmental regulation, and better understanding the molecular and metabolic pathways involved in terminal differentiation.

Recent Findings: Single-cell transcriptomics combined with state-of-the-art lineage tracing approaches in unperturbed murine embryos have yielded new insights concerning the origin of the first (primitive) erythroid cells that arise from mesoderm-derived progenitors. Moreover, studies examining primitive erythropoiesis in rare early human embryo samples reveal an overall conservation of primitive erythroid ontogeny in mammals, albeit with some interesting differences such as localization of erythropoietin (EPO) production in the early embryo.

View Article and Find Full Text PDF

The limited proliferative capacity of erythroid precursors is a major obstacle to generate sufficient numbers of in vitro-derived red blood cells (RBC) for clinical purposes. We and others have determined that BMI1, a member of the polycomb repressive complex 1 (PRC1), is both necessary and sufficient to drive extensive proliferation of self-renewing erythroblasts (SREs). However, the mechanisms of BMI1 action remain poorly understood.

View Article and Find Full Text PDF