Publications by authors named "J Palandri"

The emergence of resistance against current antimalarial treatments has necessitated the need for the development of novel antimalarial chemotypes. Toward this goal, we recently optimised the antimalarial activity of the dihydroquinazolinone scaffold and showed it targeted PfATP4. Here, we deconstruct the lactam moiety of the tricyclic dihydroquinazolinone scaffold and investigate the structure-activity relationship of the truncated scaffold.

View Article and Find Full Text PDF

To contribute to the global effort to develop new antimalarial therapies, we previously disclosed initial findings on the optimization of the dihydroquinazolinone-3-carboxamide class that targets PfATP4. Here we report on refining the aqueous solubility and metabolic stability to improve the pharmacokinetic profile and consequently in vivo efficacy. We show that the incorporation of heterocycle systems in the 8-position of the scaffold was found to provide the greatest attainable balance between parasite activity, aqueous solubility, and metabolic stability.

View Article and Find Full Text PDF

The development of new antimalarials is required because of the threat of resistance to current antimalarial therapies. To discover new antimalarial chemotypes, we screened the Janssen Jumpstarter library against the asexual parasite and identified the 7--substituted-3-oxadiazole quinolone hit class. We established the structure-activity relationship and optimized the antimalarial potency.

View Article and Find Full Text PDF

Engineering design is traditionally performed by hand: an expert makes design proposals based on past experience, and these proposals are then tested for compliance with certain target specifications. Testing for compliance is performed first by computer simulation using what is called a discipline model. Such a model can be implemented by finite element analysis, multibody systems approach, etc.

View Article and Find Full Text PDF

Background: α7 Nicotinic acetylcholine receptors are implicated in the reinstatement of drug-seeking, an important component of relapse. We showed previously that the α7 nicotinic acetylcholine receptor antagonist, methyllycaconitine, specifically attenuated morphine-primed reinstatement of conditioned place preference in rodents and this effect was mediated in the ventral hippocampus.

Aims: The purpose of this study was to evaluate α7 nicotinic acetylcholine receptor antagonism in reinstatement of the conditioned place preference for the more widely abused opioid, heroin, and to compare the effect of α7 nicotinic acetylcholine receptor blockade on reinstatement of heroin-seeking and heroin self-administration in an intravenous self-administration model of addictive behaviour.

View Article and Find Full Text PDF