Publications by authors named "J P Vigue"

Several types of experiments showed the existence of negative methane ions CH_{4}^{-} over a period of 50 years but the nature of this elusive species remains unknown. A benchmark study has shown that the experimentally observed species cannot be described by the attachment of an electron in the doublet ground state of CH_{4}^{-}. Here we find CH_{4}^{-} as being a metastable species in its lowest quartet spin state, a CH_{2}^{-}:H_{2} exciplex with three open shells lying ca.

View Article and Find Full Text PDF

A phase modulation puts the atom in a coherent superposition of quantum states with different kinetic energies. We have detected the interference of such modulated waves at the output of our atom interferometer, and we have observed beats at the difference of the modulation frequencies and its harmonics, in good agreement with theory. The phase modulations were produced by a Kerr phase modulator, i.

View Article and Find Full Text PDF

We have developed and characterized a heat pipe for lithium spectroscopy, which is cooled only by air-convection, although its operating temperature is 330 °C: its construction is simple, of moderate cost and it is very reliable. A thermal model proves that heat-pipes without water cooling can be used up to considerably higher temperatures.

View Article and Find Full Text PDF

In this Letter, we report a measurement of the He-McKellar-Wilkens (HMW) topological phase by atom interferometry. The experiment is done with our lithium atom interferometer, and in order to suppress the stray effects present in our first experiment, we use optical pumping of the (7)Li atoms in their F=2, m(F)=+2 (or -2) ground state sublevel. In these conditions, the measured phase shift is the sum of the HMW phase and of the Aharonov-Casher phase, which are separated due to their different m(F) dependence.

View Article and Find Full Text PDF

We report an experimental test of the topological phase predicted by He and McKellar in 1993 and by Wilkens in 1994: this phase, which appears when an electric dipole propagates in a magnetic field, is connected to the Aharonov-Casher effect by electric-magnetic duality. The He-McKellar-Wilkens phase is quite small, at most 27 mrad in our experiment, and this experiment requires the high phase sensitivity of our atom interferometer with spatially separated arms as well as symmetry reversals such as the direction of the electric and magnetic fields. The measured value of the He-McKellar-Wilkens phase differs by 31% from its theoretical value, a difference possibly due to some as yet uncontrolled systematic errors.

View Article and Find Full Text PDF