Human exposure to manufactured nanoparticles (NPs) is a public health concern. Endothelial cells lining the inner surface of arteries could be one of the primary targets for inhaled nanoparticles. Moreover, it is well known that alteration in calcium signaling is a critical event involved in the physiopathology of cardiovascular diseases.
View Article and Find Full Text PDFThe mechanisms underlying pulmonary hypertension (PH) are complex and multifactorial, and involve different cell types that are interconnected through gap junctional channels. Although connexin (Cx)-43 is the most abundant gap junction protein in the heart and lungs, and critically governs intercellular signalling communication, its contribution to PH remains unknown. The focus of the present study is thus to evaluate Cx43 as a potential new target in PH.
View Article and Find Full Text PDFPulmonary arterial adventitial fibroblasts (PAF), the most abundant cellular constituent of adventitia, act as a key regulator of pulmonary vascular wall structure and function from the outside-in. Previous studies indicate that transient receptor potential vanilloid 4 (TRPV4) channel plays an important role in the development of pulmonary hypertension (PH), but no attention has been given so far to its role in adventitial remodeling. In this study, we thus investigated TRPV4 implication in PAF activation occurring in PH.
View Article and Find Full Text PDFIn intrapulmonary arteries (IPA), endothelial cells (EC) respond to mechanical stimuli by releasing vasoactive factors to set the vascular tone. Piezo1, a stretch-activated, calcium-permeable channel, is a sensor of mechanical stress in EC. The present study was undertaken to investigate the implication of Piezo1 in the endothelium-dependent regulation of IPA tone and potential involvement of Piezo1 in pulmonary hypertension, the main disease of this circulation.
View Article and Find Full Text PDFRecent studies have revealed that particulate matter (PM) exert deleterious effects on vascular function. Pulmonary artery endothelial cells (HPAEC), which are involved in the vasomotricity regulation, can be a direct target of inhaled particles. Modifications in calcium homeostasis and oxidative stress are critical events involved in the physiopathology of vascular diseases.
View Article and Find Full Text PDF