Background: We have recently developed a highly accurate urine-based test, named Urodiag®, associating FGFR3 mutation and DNA methylation assays for recurrence surveillance in patients with low-, intermediate-, and high-risk NMIBC. Previously, the detection of four FGFR3 mutations (G372C, R248C, S249C and Y375C) required amplification steps and PCR products were analyzed by capillary electrophoresis (Allele Specific-PCR, AS-PCR), which was expensive and time-consuming. Here, we present the development a novel ultra-sensitive multiplex PCR assay as called "Mutated Allele Specific Oligonucleotide-PCR (MASO-PCR)", generating a cost-effective, simple, fast and clinically applicable assay for the detection of FGFR3 mutations in voided urine.
View Article and Find Full Text PDFBackground: Colorectal cancer (CRC) remains a major cause of cancer fatalities in developed countries. The risk of death is correlated to the stage of CRC during the primary diagnosis. Early diagnosis is closely associated with enhanced survival rate.
View Article and Find Full Text PDFBackground: Non-muscle-invasive bladder cancer (NMIBC) is a high incidence form of bladder cancer (BCa), where genetic and epigenetic alterations occur frequently. We assessed the performance of associating a FGFR3 mutation assay and a DNA methylation analysis to improve bladder cancer detection and to predict disease recurrence of NMIBC patients.
Methods: We used allele specific PCR to determine the FGFR3 mutation status for R248C, S249C, G372C, and Y375C.
Unlabelled: Colorectal cancer (CRC) remains a major cause of cancer related-death in developed countries. The mortality risk is correlated with the stage of CRC determined at the primary diagnosis and early diagnosis is associated with enhanced survival rate. Currently, only faecal occult blood tests are used to screen for CRC.
View Article and Find Full Text PDFBackground: Using quantitative methylation-specific PCR (QM-MSP) is a promising method for colorectal cancer (CRC) diagnosis from stool samples. Difficulty in eliminating PCR inhibitors of this body fluid has been extensively reported. Here, spermidine is presented as PCR facilitator for the detection of stool DNA methylation biomarkers using QM-MSP.
View Article and Find Full Text PDF