With the increasing development of oral peptide dosage forms, a comprehensive understanding of factors affecting peptide drug stability in the solid-state is critical. This study used human insulin, as a model peptide, to examine the individual and interactive effects of temperature and humidity on its solid-state stability. Insulin was stored at temperature (25°C, 40°C, and 6 °C) and humidity (1%, 33% and 75%) over 6 months.
View Article and Find Full Text PDFDonor-acceptor dyads are promising materials for improving triplet-sensitized photon upconversion due to faster intramolecular energy transfer (ET), which unfortunately competes with charge transfer (CT) dynamics. To circumvent the issue associated with CT, we propose a novel purely organic donor-acceptor dyad, where the CT character is confined within the donor moiety. In this work, we report the synthesis and characterization of a stable organic radical donor-triplet acceptor dyad () consisting of the acceptor perylene () linked to the donor (4--carbazolyl-2,6-dichlorophenyl)-bis(2,4,6-trichlorophenyl)methyl radical ().
View Article and Find Full Text PDFDepression and anxiety are associated with deficits in adjusting learning behaviour to changing outcome contingencies. This is likely to drive and maintain symptoms, for instance, by perpetuating negative biases or a sense of uncontrollability. Normalising such deficits in adaptive learning might therefore be a novel treatment target for affective disorders.
View Article and Find Full Text PDFThe Indo-European languages are among the most widely spoken in the world, yet their early diversification remains contentious. It is widely accepted that the spread of this language family across Europe from the 5th millennium BP correlates with the expansion and diversification of steppe-related genetic ancestry from the onset of the Bronze Age. However, multiple steppe-derived populations co-existed in Europe during this period, and it remains unclear how these populations diverged and which provided the demographic channels for the ancestral forms of the Italic, Celtic, Greek, and Armenian languages.
View Article and Find Full Text PDFOn-surface synthesis of functional molecular structures provides a route to the fabrication of materials tailored to exhibit bespoke catalytic, (opto)electronic, and magnetic properties. The fabrication of graphene nanoribbons via on-surface synthesis, where reactive precursor molecules are combined to form extended polymeric structures, provides quasi-1D graphitic wires that can be doped by tuning the properties/composition of the precursor molecules. Here, we combine the atomic precision of solution-phase synthetic chemistry with on-surface protocols to enable reaction steps that cannot yet be achieved in solution.
View Article and Find Full Text PDF