Publications by authors named "J P Meillon"

We developed a set of web-based tools to meet the demand for spatial planning and help to determine the available space suitable for marine aquaculture activity. These tools were derived from AkvaVis concept, which was initially designed for the management of Norwegian aquaculture. The AkvaVis concept was adapted to different national aquaculture contexts and two other tools were developed in France and China.

View Article and Find Full Text PDF

MK-8591 (4'-ethynyl-2-fluoro-2'-deoxyadenosine) is a novel nucleoside analog that displays a differentiated mechanism of action as a nucleoside reverse transcriptase translocation inhibitor (NRTTI) compared to approved NRTIs. Herein, we describe our recent efforts to explore the impact of structural changes to the properties of MK-8591 through the synthesis and antiviral evaluation of carbocyclic derivatives. Synthesized analogs were evaluated for their antiviral activity, and the corresponding triphosphates were synthesized and evaluated in a biochemical assay.

View Article and Find Full Text PDF

The first example of a nucleoside analogue bearing a 5'-deoxy-beta-D-allo-septanose as a seven-membered ring sugar moiety, namely 9-(5-deoxy-beta-D-allo-septanosyl)-adenine, is reported. This compound was synthesized in 14 steps from the commercially available D-glycero-D-gulo-1,4-lactone. When evaluated in cell culture experiments against a broad range of viruses, it did not exhibit any significant antiviral effect or cytotoxicity.

View Article and Find Full Text PDF

2-Methyl-2-cyclopentene-1-one was used as starting material in a novel route toward 2'-branchedcarbocyclic nucleosides. This methodology was efficiently adapted to the preparation of 4'-epicarbocycles. A series of this new class of molecules was synthesized as potential antiviral compounds.

View Article and Find Full Text PDF

We report the synthesis and the functional studies of multiple crown alpha-helical peptides designed to form artificial ion channels. The approach combines the versatility of solid phase peptide synthesis, the conformational predictability of peptidic molecules, and the solution synthesis of crown ethers with engineerable ion-binding abilities. Several biophysical methods were employed to characterize the activity and the mode of action of these crown peptide nanostructures.

View Article and Find Full Text PDF