Oil spills are a frequent perturbation to the marine environment that has rapid and significant impacts on the local microbiome. Previous studies have shown that exposure to synthetic dispersant alone did not enhance heterotrophic microbial activity or oxidation rates of specific hydrocarbon components but increased the abundance of some taxa (e.g.
View Article and Find Full Text PDFNearly half of carbon fixation and primary production originates from marine phytoplankton, and much of it occurs in episodic blooms in upwelling regimes. Here, we simulated blooms limited by nitrogen and iron by incubating Monterey Bay surface waters with subnutricline waters and inorganic nutrients and measured the whole-community transcriptomic response during mid- and late-bloom conditions. Cell counts revealed that centric and pennate diatoms (largely Pseudo-nitzschia and Chaetoceros spp.
View Article and Find Full Text PDFDiatoms are one of the most successful phytoplankton groups in our oceans, being responsible for over 20% of the Earth's photosynthetic productivity. Their chimeric genomes have genes derived from red algae, green algae, bacteria, and heterotrophs, resulting in multiple isoenzymes targeted to different cellular compartments with the potential for differential regulation under nutrient limitation. The resulting interactions between metabolic pathways are not yet fully understood.
View Article and Find Full Text PDFWe used 16S, 18S, plastid and internal transcribed spacer (for Synechococcus strains) sequencing to quantify relative microbial abundances in water-column samples and on sediment-trap-collected particles across an environmental gradient in the California Current Ecosystem (CCE) spanning a > 60-fold range of surface chlorophyll. Most mixed-layer dominant eukaryotes and prokaryotes were consistently underrepresented on sinking particles. Diatoms were the only phototrophic taxa consistently overrepresented.
View Article and Find Full Text PDF