Background: Understanding the interaction mechanisms and the relevant binding constants between humic acids and emerging or regulated pollutants is of utmost importance in predicting their geochemical mobility, bioavailability, and degradation. Fluorescence spectroscopy, UV-vis spectroscopy, equilibrium dialysis, and solid-phase extraction combined with liquid chromatography-mass spectrometry have been employed to elucidate interactions of humic acids with organic micropollutants, especially pharmaceutical drugs. These methods demand large sample volumes, long equilibration times, and laborious extraction steps which may imply analytical errors.
View Article and Find Full Text PDFThis paper evaluates linear and nonlinear regression analysis to describe the empirical adsorption kinetics using pseudo-first-order (PFO) and pseudo-second-order (PSO) models. These models have been used to characterize the performance of adsorbents for environmental remediation and environmental modeling. Data were simulated using the PFO and PSO models with 1, 2, and 5% noise levels and fitted by nonlinear and linearized PFO and PSO equations.
View Article and Find Full Text PDFThis paper demonstrates that determining adsorption capacity and affinity through data fitting of adsorption isotherms by nonlinear regression (NLR) is more accurate than linearized Langmuir equations. Linearization errors and the subjective choice of data points used to apply the linear regression analysis may deviate the fitted adsorption parameters (constants and adsorption capacities) from the expected values. The deviation magnitude increases for heterogeneous sorbents such as environmental particles and molecularly imprinted polymers, which adsorb by more than one sorption mechanism or adsorption sites of diverse chemical natures.
View Article and Find Full Text PDFThere is a growing demand for assessing the concentrations of Hydrophobic Organic Contaminants (HOCs) in aquatic environments, including Persistent Organic Pollutants (POPs). The hydrophobicity of POPs challenges their quantification in waters due to the sub-trace concentrations, especially when using conventional spot sampling. The results from the conventional samples are only a "snapshot" of the concentrations (if detected) at the specific sampling moment.
View Article and Find Full Text PDFEven at low concentrations in environmental waters, some viruses are highly infective, making them a threat to human health. They are the leading cause of waterborne enteric diseases. In agriculture, plant viruses in irrigation and runoff water threat the crops.
View Article and Find Full Text PDF