Publications by authors named "J P Kocher"

Androgenetic alopecia (AGA) causes balding in approximately 50% of adults. One primary cause of AGA is synthesis of dihydrotestosterone from testosterone by 5-α reductase. Systemic pharmaceutical interventions have potentially serious side effects, necessitating development of localized interventions.

View Article and Find Full Text PDF
Article Synopsis
  • * A new method has been developed that can identify all 92 different telomere alleles using long read sequencing data, focusing on unique repeat variants near telomeres.
  • * This advanced technique allows for detailed analysis of individual telomeres, paving the way for deeper understanding of their specific roles in aging and disease.
View Article and Find Full Text PDF

Purpose Of Review: The length of telomeres, protective structures at the chromosome ends, is a well-established biomarker for pathological conditions including multisystemic syndromes called telomere biology disorders. Approaches to measure telomere length (TL) differ on whether they estimate average, distribution, or chromosome-specific TL, and each presents their own advantages and limitations.

Recent Findings: The development of long-read sequencing and publication of the telomere-to-telomere human genome reference has allowed for scalable and high-resolution TL estimation in pre-existing sequencing datasets but is still impractical as a dedicated TL test.

View Article and Find Full Text PDF

A GGGGCC hexanucleotide repeat expansion (HRE) in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), fatal neurodegenerative diseases with no cure or approved treatments that substantially slow disease progression or extend survival. Mechanistic underpinnings of neuronal death include C9ORF72 haploinsufficiency, sequestration of RNA-binding proteins in the nucleus, and production of dipeptide repeat proteins. Here, we used an adeno-associated viral vector system to deliver CRISPR/Cas9 gene-editing machineries to effectuate the removal of the HRE from the C9ORF72 genomic locus.

View Article and Find Full Text PDF

Gene editing for the cure of inborn errors of metabolism (IEMs) has been limited by inefficiency of adult hepatocyte targeting. Here, we demonstrate that in utero CRISPR/Cas9-mediated gene editing in a mouse model of hereditary tyrosinemia type 1 provides stable cure of the disease. Following this, we performed an extensive gene expression analysis to explore the inherent characteristics of fetal/neonatal hepatocytes that make them more susceptible to efficient gene editing than adult hepatocytes.

View Article and Find Full Text PDF