Murine adenosine deaminase (mADA) is a prototypic system for studying the thermal activation of active site chemistry within the TIM barrel family of enzyme reactions. Previous temperature-dependent hydrogen deuterium exchange studies under various conditions have identified interconnected thermal networks for heat transfer from opposing protein-solvent interfaces to active site residues in mADA. One of these interfaces contains a solvent exposed helix-loop-helix moiety that presents the hydrophobic face of its long α-helix to the backside of bound substrate.
View Article and Find Full Text PDFCopper amine oxidases (CAOs) catalyze the oxidative deamination of primary amines to aldehyde, ammonia, and hydrogen peroxide as products and are widely distributed in bacteria, plants, and eukaryotes. These enzymes initiate the single turnover, post-translational conversion of an active site tyrosine to the redox cofactor 2,4,5-trihydroxyphenylalanine quinone (TPQ), subsequently employing TPQ to catalyze steady-state amine oxidation. The mechanisms of TPQ biogenesis and steady-state amine oxidation have been studied extensively, with consensus mechanisms proposed for both reactions.
View Article and Find Full Text PDFInteractions among proteins and peptides are essential for many biological activities including the tailoring of peptide substrates to produce natural products. The first step in the production of the bacterial redox cofactor pyrroloquinoline quinone (PQQ) from its peptide precursor is catalyzed by a radical SAM (rSAM) enzyme, PqqE. We describe the use of hydrogen-deuterium exchange mass spectrometry (HDX-MS) to characterize the structure and conformational dynamics in the protein-protein and protein-peptide complexes necessary for PqqE function.
View Article and Find Full Text PDFScientific conferences play an important role in advancing research, scholarship, and the careers of emerging scientists. The COVID-19 pandemic offered meeting organizers and researchers alike an opportunity to reimagine what scientific conferences could look like. Virtual conferences can increase inclusivity and accessibility while decreasing costs and carbon emissions.
View Article and Find Full Text PDFThe enzyme soybean lipoxygenase (SLO) provides a prototype for deep tunneling mechanisms in hydrogen transfer catalysis. This work combines room temperature X-ray studies with extended hydrogen-deuterium exchange experiments to define a catalytically-linked, radiating cone of aliphatic side chains that connects an active site iron center of SLO to the protein-solvent interface. Employing eight variants of SLO that have been appended with a fluorescent probe at the identified surface loop, nanosecond fluorescence Stokes shifts have been measured.
View Article and Find Full Text PDF