Publications by authors named "J P Kallmeyer"

The Eger Rift subsurface is characterized by frequent seismic activity and consistently high CO concentrations, making it a unique deep biosphere ecosystem and a suitable site to study the interactions between volcanism, tectonics, and microbiological activity. Pulses of geogenic H during earthquakes may provide substrates for methanogenic and chemolithoautotrophic processes, but very little is currently known about the role of subsurface microorganisms and their cellular processes in this type of environment. To assess the impact of geologic activity on microbial life, we analyzed the geological, geochemical, and microbiological composition of rock and sediment samples from a 238 m deep drill core, running across six lithostratigraphic zones.

View Article and Find Full Text PDF

Lake Sentani is a tropical lake in Indonesia, consisting of four interconnected sub-basins of different water depths. While previous work has highlighted the impact of catchment composition on biogeochemical processes in Lake Sentani, little is currently known about the microbiological characteristics across this unique ecosystem. With recent population growth in this historically rural area, the anthropogenic impact on Lake Sentani and hence its microbial life is also increasing.

View Article and Find Full Text PDF

Ferruginous conditions prevailed through Earth's early oceans history, yet our understanding of biogeochemical cycles in anoxic iron-rich, sulfate-poor sediments remains elusive in terms of redox processes and organic matter remineralization. Using comprehensive geochemistry, cell counts, and metagenomic data, we investigated the taxonomic and functional distribution of the microbial subsurface biosphere in Lake Towuti, a stratified ferruginous analogue. Below the zone in which pore water becomes depleted in electron acceptors, cell densities exponentially decreased while microbial assemblages shifted from iron- and sulfate-reducing bacterial populations to fermentative anaerobes and methanogens, mostly selecting Bathyarchaeia below the sulfate reduction zone.

View Article and Find Full Text PDF

The adaptation of the phylum Chloroflexota to various geochemical conditions is thought to have originated in primitive microbial ecosystems, involving hydrogenotrophic energy conservation under ferruginous anoxia. Oligotrophic deep waters displaying anoxic ferruginous conditions, such as those of Lake Towuti, and their sediments may thus constitute a preferential ecological niche for investigating metabolic versatility in modern Chloroflexota. Combining pore water geochemistry, cell counts, sulfate reduction rates, and 16S rRNA genes with in-depth analysis of metagenome-assembled genomes, we show that Chloroflexota benefit from cross-feeding on metabolites derived from canonical respiration chains and fermentation.

View Article and Find Full Text PDF
Article Synopsis
  • * A study focused on a 2-billion-year-old rock in South Africa's Bushveld Igneous Complex used advanced techniques to detect both native and contaminant microbes in drill core samples.
  • * Researchers identified microbial colonization in clay-filled veins of the rock, revealing that tightly packed clay minerals provide essential energy for microbial survival over geological timescales.
View Article and Find Full Text PDF