Simulating the response of a radiation detector is a modelling challenge due to the stochastic nature of radiation, often complex geometries, and multi-stage signal processing. While sophisticated tools for Monte Carlo simulation have been developed for radiation transport, emulating signal processing and data loss must be accomplished using a simplified model of the electronics called the digitizer. Due to a large number of free parameters, calibrating a digitizer quickly becomes an optimisation problem.
View Article and Find Full Text PDFPositron emission particle tracking (PEPT) is a technique which allows the high-resolution, three-dimensional imaging of particulate and multiphase systems, including systems which are large, dense, and/or optically opaque, and thus difficult to study using other methodologies. In this work, we bring together researchers from the world's foremost PEPT facilities not only to give a balanced and detailed overview and review of the technique but, for the first time, provide a rigorous, direct, quantitative assessment of the relative strengths and weaknesses of all contemporary PEPT methodologies. We provide detailed explanations of the methodologies explored, including also interactive code examples allowing the reader to actively explore, edit and apply the algorithms discussed.
View Article and Find Full Text PDFPositron emission particle tracking (PEPT) is a noninvasive technique capable of imaging the three-dimensional dynamics of a wide variety of powders, particles, grains, and/or fluids. The PEPT technique can track the motion of particles with high temporal and spatial resolution and can be used to study various phenomena in systems spanning a broad range of scales, geometries, and physical states. We provide an introduction to the PEPT technique, an overview of its fundamental principles and operation, and a brief review of its application to a diverse range of scientific and industrial systems.
View Article and Find Full Text PDF