We investigate the photon statistics of the light emitted by single self-assembled hybrid gold-CdSe/CdS/CdZnS colloidal nanocrystal supraparticles through the detailed analysis of the intensity autocorrelation function(). We first reveal that, despite the large number of nanocrystals involved in the supraparticle emission, antibunching can be observed. We then present a model based on non-coherent Förster energy transfer and Auger recombination that well captures photon antibunching.
View Article and Find Full Text PDFSolid-state single-photon emitters (SPEs) commonly encounter the limitation of quasi-omnidirectional radiation patterns, which poses challenges in utilizing their emission with conventional optical instruments. In this study, we demonstrate the tailoring of the far-field radiation patterns of SPEs based on colloidal quantum dots (QDs), both theoretically and experimentally, by employing a polymer-based dielectric antenna. We introduce a simple and cost-effective technique, namely low one-photon absorption direct laser writing, to achieve precise coupling of a QD into an all-polymer circular waveguide resonance grating.
View Article and Find Full Text PDFIn the field of quantum technology, there has been a growing interest in fully integrated systems that employ single photons due to their potential for high performance and scalability. Here, a simple method is demonstrated for creating on-chip 3D printed polymer waveguide-coupled single-photon emitters based on colloidal quantum dots (QDs). By using a simple low-one photon absorption technique, we were able to create a 3D polymeric crossed-arc waveguide structure with a bright QD on top.
View Article and Find Full Text PDFWe report on the synthesis of hybrid light emitting particles with a diameter ranging between 100 and 500 nm, consisting in a compact semiconductor CdSe/CdS/CdZnS nanocrystal aggregate encapsulated by a controlled nanometric size silica and gold layers. We first characterize the Purcell decay rate enhancement corresponding to the addition of the gold nanoshell as a function of the particle size and find a good agreement with the predictions of numerical simulations. Then, we show that the contribution corresponding to Förster resonance energy transfer is inhibited.
View Article and Find Full Text PDF