Publications by authors named "J P Gudikote"

Loss-of-function somatic mutations of , a tumor suppressor gene encoding LKB1 that contributes to the altered metabolic phenotype of cancer cells, is the second most common event in lung adenocarcinomas and often co-occurs with activating mutations. Tumor cells lacking LKB1 display an aggressive phenotype, with uncontrolled cell growth and higher energetic and redox stress due to its failure to balance ATP and NADPH levels in response to cellular stimulus. The identification of effective therapeutic regimens for patients with LKB1-deficient non-small cell lung cancer (NSCLC) remains a major clinical need.

View Article and Find Full Text PDF

Inactivation of p53 is present in almost every tumor, and hence, p53-reactivation strategies are an important aspect of cancer therapy. Common mechanisms for p53 loss in cancer include expression of p53-negative regulators such as MDM2, which mediate the degradation of wildtype p53 (p53α), and inactivating mutations in the TP53 gene. Currently, approaches to overcome p53 deficiency in these cancers are limited.

View Article and Find Full Text PDF

Although postoperative radiotherapy is often used to maintain local control after surgical resection and chemotherapy for locally advanced non-small cell lung cancer (NSCLC), both locoregional failure and distant metastasis remain problematic. The mechanisms of therapeutic resistance remain poorly understood. We used reverse-phase protein arrays (RPPA) to profile the baseline expression of 170 total and phosphorylated proteins in 70 NSCLC cell lines to categorize pathways that may contribute to radiation resistance.

View Article and Find Full Text PDF

Purpose: VEGF pathway inhibitors have been investigated as therapeutic agents in the treatment of non-small cell lung cancer (NSCLC) because of its central role in angiogenesis. These agents have improved survival in patients with advanced NSCLC, but the effects have been modest. Although VEGFR2/KDRis typically localized to the vasculature, amplification ofKDRhas reported to occur in 9% to 30% of the DNA from different lung cancers.

View Article and Find Full Text PDF

Unlabelled: The molecular underpinnings that drive the heterogeneity of KRAS-mutant lung adenocarcinoma are poorly characterized. We performed an integrative analysis of genomic, transcriptomic, and proteomic data from early-stage and chemorefractory lung adenocarcinoma and identified three robust subsets of KRAS-mutant lung adenocarcinoma dominated, respectively, by co-occurring genetic events in STK11/LKB1 (the KL subgroup), TP53 (KP), and CDKN2A/B inactivation coupled with low expression of the NKX2-1 (TTF1) transcription factor (KC). We further revealed biologically and therapeutically relevant differences between the subgroups.

View Article and Find Full Text PDF