Publications by authors named "J P Grime"

Article Synopsis
  • Oropharyngeal cancer treatments can cause swallowing difficulties due to muscle atrophy and scarring despite their effectiveness in tumor removal.
  • Current rehabilitation methods for improving swallowing, like tongue exercises, have proven ineffective, prompting the exploration of new solutions.
  • An injectable biomaterial made from decellularized porcine skeletal muscle (SKM hydrogel) showed promise in reducing scarring and improving muscle healing in a rat model, while also promoting an anti-inflammatory immune response.
View Article and Find Full Text PDF

The early and late stages of human immunodeficiency virus (HIV) replication are orchestrated by the capsid (CA) protein, which self-assembles into a conical protein shell during viral maturation. Small molecule drugs known as capsid inhibitors (CIs) impede the highly regulated activity of CA. Intriguingly, a few CIs, such as PF-3450074 (PF74) and GS-CA1, exhibit effects at multiple stages of the viral lifecycle at effective concentrations in the pM to nM regimes, while the majority of CIs target a single stage of the viral lifecycle and are effective at nM to μM concentrations.

View Article and Find Full Text PDF

The influenza A matrix 2 (M2) transmembrane protein facilitates virion release from the infected host cell. In particular, M2 plays a role in the induction of membrane curvature and/or in the scission process whereby the envelope is cut upon virion release. Here we show using coarse-grained computer simulations that various M2 assembly geometries emerge due to an entropic driving force, resulting in compact clusters or linearly extended aggregates as a direct consequence of the lateral membrane stresses.

View Article and Find Full Text PDF

The packaging and budding of Gag polyprotein and viral RNA is a critical step in the HIV-1 life cycle. High-resolution structures of the Gag polyprotein have revealed that the capsid (CA) and spacer peptide 1 (SP1) domains contain important interfaces for Gag self-assembly. However, the molecular details of the multimerization process, especially in the presence of RNA and the cell membrane, have remained unclear.

View Article and Find Full Text PDF

Climate change can influence soil microorganisms directly by altering their growth and activity but also indirectly via effects on the vegetation, which modifies the availability of resources. Direct impacts of climate change on soil microorganisms can occur rapidly, whereas indirect effects mediated by shifts in plant community composition are not immediately apparent and likely to increase over time. We used molecular fingerprinting of bacterial and fungal communities in the soil to investigate the effects of 17 years of temperature and rainfall manipulations in a species-rich grassland near Buxton, UK.

View Article and Find Full Text PDF