The effective planning and allocation of resources in modern breeding programs is a complex task. Breeding program design and operational management have a major impact on the success of a breeding program and changing parameters such as the number of selected/phenotyped/genotyped individuals in the breeding program will impact genetic gain, genetic diversity, and costs. As a result, careful assessment and balancing of design parameters is crucial, taking into account the trade-offs between different breeding goals and associated costs.
View Article and Find Full Text PDFAdditive manufacturing (3D printing) has been deployed across multiple platforms to fabricate bioengineered tissues. We demonstrate the use of a Thermal Inkjet Pipette System (TIPS) for targeted delivery of cells onto manufactured substrates to design bio-bandages. Two cell lines - HEK 293 (kidney) and K7M2 wt (bone) - were applied using TIPS.
View Article and Find Full Text PDFIn recent years, breeding programs have increased significantly in size and complexity, with various highly interdependent parameters and many contrasting breeding goals. As a result, resource allocation in these programs has become more complex, and deriving an optimal breeding strategy has become increasingly challenging. To address this, a common practice is to reduce the optimization problem to a set of scenarios that differ only in a few parameters and can therefore be analyzed in detail.
View Article and Find Full Text PDFBackground: This paper highlights the relationships between economic weights, genetic progress, and phenotypic progress in genomic breeding programs that aim at generating genetic progress in complex, i.e., multi-trait, breeding objectives via a combination of estimated breeding values for different trait complexes.
View Article and Find Full Text PDF