Publications by authors named "J P Florido"

Pyruvate metabolism defects lead to severe neuropathies such as the Leigh syndrome (LS) but the molecular mechanisms underlying neuronal cell death remain poorly understood. Here, we unravel a connection between pyruvate metabolism and the regulation of the epitranscriptome that plays an essential role during brain development. Using genetically engineered mouse model and primary neuronal cells, we identify the transcription factor E4F1 as a key coordinator of AcetylCoenzyme A (AcCoA) production by the pyruvate dehydrogenase complex (PDC) and its utilization as an essential co-factor by the Elongator complex to acetylate tRNAs at the wobble position uridine 34 (U).

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is a highly malignant disease with high death rates that have remained substantially unaltered for decades. Therefore, new treatment approaches are urgently needed. Human papillomavirus-negative tumors harbor areas of terminally differentiated tissue that are characterized by cornification.

View Article and Find Full Text PDF

Background: Falls are directly related to morbidity and mortality of older people. Multifactorial approaches that are individualised and based on fall risk factors are necessary. This study aims to verify the effects of a case management-based intervention on non-motor risk factors for falls in community-dwelling older people with a history of falls.

View Article and Find Full Text PDF

The circadian clock is a regulatory system, with a periodicity of approximately 24 h, which generates rhythmic changes in many physiological processes, including mitochondrial activity. Increasing evidence links chronodisruption with aberrant functionality in clock gene expression, resulting in multiple diseases such as cancer. Melatonin, whose production and secretion oscillates according to the light-dark cycle, is the principal regulator of clock gene expression.

View Article and Find Full Text PDF

The development of new anticancer therapies tends to be very slow. Although their impact on potential candidates is confirmed in preclinical studies, ∼95 % of these new therapies are not approved when tested in clinical trials. One of the main reasons for this is the lack of accurate preclinical models.

View Article and Find Full Text PDF