This study analyses the insertion of Chlorogenic acid (CGA) in phosphatidylcholine (PC) membranes enriched with cholesterol (Chol). While cholesterol decreases the area per lipid and increases the dipole potential, CGA increases and decreases these values, respectively. When CGA is inserted into cholesterol-containing DMPC membranes, these effects cancel out, resulting in values that overlap with those of DMPC monolayers without Chol and CGA.
View Article and Find Full Text PDFThis review is an attempt to incorporate water as a structural and thermodynamic component of biomembranes. With this purpose, the consideration of the membrane interphase as a bidimensional hydrated polar head group solution, coupled to the hydrocarbon region allows for the reconciliation of two theories on cells in dispute today: one considering the membrane as an essential part in terms of compartmentalization, and another in which lipid membranes are not necessary and cells can be treated as a colloidal system. The criterium followed is to describe the membrane state as an open, non-autonomous and responsive system using the approach of Thermodynamic of Irreversible Processes.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
January 2021
Chlorogenic acid (CGA) is a strong phenolic antioxidant with antibacterial properties composed by a caffeoyl ester of quinic acid. Although a number of benefits has been reported and related to interactions with the red blood cell membranes, details on its membrane action and how composition and membrane state may affect it, is not yet well defined. In this work, the interaction of CGA with lipid monolayers and bilayers composed by 1,2-dimiristoyl-sn-glycero-3-phosphocholine (DMPC); 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (14:0 diether PC); 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine (16:0 diether PC) were studied at different surface pressures (π).
View Article and Find Full Text PDFThe lack of carbonyl groups and the presence of ether bonds give the lipid interphase a different water organization around the phosphate groups that affects the compressibility and electrical properties of lipid membranes. Generalized polarization of 1,2-di--tetradecyl--glycero-3-phosphocholine (14:0 diether PC) in correlation with Fourier transform infrared (FTIR) analysis indicates a higher level of polarizability of water molecules in the membrane phase around the phosphate groups both below and above . This reorganization of water promotes a different response in compressibility and dipole moment of the interphase, which is related to different H bonding of water molecules with phosphates (PO) and carbonyl (CO) groups.
View Article and Find Full Text PDFThis paper demonstrates by means of FTIR/ATR analysis that water molecules intercalate at different extents in the acyl chain region of lipid membranes in correlation with the hydration of the phosphate groups. This correlation is sensible to the chain length, the presence of double bonds and the phase state of the lipid membrane. The presence of carbonyl groups CO modifies the profile of hydration of the two regions as observed from the comparison of DMPC and 14:0 Diether PC.
View Article and Find Full Text PDF