A photonic wire antenna embedding individual quantum dots (QDs) constitutes a promising platform for both quantum photonics and hybrid nanomechanics. We demonstrate here an integrated device in which on-chip electrodes can apply a static or oscillating bending force to the upper part of the wire. In the static regime, we achieve control over the bending direction and apply at will tensile or compressive mechanical stress on any QD.
View Article and Find Full Text PDFThe optical properties of nanowire-based InGaN/GaN multiple quantum wells (MQWs) heterostructures grown by plasma-assisted molecular beam epitaxy are investigated. The beneficial effect of an InGaN underlayer grown below the active region is demonstrated and assigned to the trapping of point defects transferred from the pseudo-template to the active region. The influence of surface recombination is also investigated.
View Article and Find Full Text PDFWe review recent studies of cavity switching induced by the optical injection of free carriers in micropillar cavities containing quantum dots. Using the quantum dots as a broadband internal light source and a streak camera as detector, we track the resonance frequencies for a large set of modes with picosecond time resolution. We report a record-fast switch-on time constant (1.
View Article and Find Full Text PDFSupervised exercise dietary programs are recommended to relieve cancer-related fatigue and weight increase induced by adjuvant treatment of early breast cancer (EBC). As this recommendation lacks a high level of evidence, we designed a multicenter randomized trial to evaluate the impact of an Adapted Physical Activity Diet (APAD) education program on fatigue. We randomized 360 women with EBC who were receiving adjuvant chemotherapy and radiotherapy to APAD or usual care at eight French cancer institutions.
View Article and Find Full Text PDFDifferent types of buffer layers such as InGaN underlayer (UL) and InGaN/GaN superlattices are now well-known to significantly improve the efficiency of -plane InGaN/GaN-based light-emitting diodes (LEDs). The present work investigates the role of two different kinds of pregrowth layers (low In-content InGaN UL and GaN UL namely "GaN spacer") on the emission of the core-shell -plane InGaN/GaN single quantum well (QW) grown around Si-doped -GaN microwires obtained by silane-assisted metal organic vapor phase epitaxy. According to photo- and cathodoluminescence measurements performed at room temperature, an improved efficiency of light emission at 435 nm with internal quantum efficiency >15% has been achieved by adding a GaN spacer prior to the growth of QW.
View Article and Find Full Text PDF