Publications by authors named "J P Binette"

Shield back-face deformation (BFD) is the result of composite ballistic shields deflecting or absorbing a projectile's energy and deforming towards the user. BFD can result in localized loading to the upper extremity, where the shield is secured to the user. An augmented anthropomorphic test device upper extremity was used to quantify this applied load.

View Article and Find Full Text PDF

Ballistic shields are used by military and police members in dangerous situations to protect the user against threats such as gunfire. When struck, the shield material deforms to absorb the incoming kinetic energy of the projectile. If the rapid back-face deformation contacts the arm, it can potentially impart a large force, leading to injury risk, termed behind armor blunt trauma (BABT).

View Article and Find Full Text PDF

Background: Nursing education necessitates vigilance for clinical safety, a daunting challenge given the complex interchanges between students, patients and educators. As active learners, students offer a subjective understanding concerning safety in the practice milieu that merits further study. This study describes the viewpoints of senior undergraduate nursing students about compromised safety in the clinical learning environment.

View Article and Find Full Text PDF

The Vpu accessory protein promotes HIV-1 release by counteracting Tetherin/BST-2, an interferon-regulated restriction factor, which retains virions at the cell-surface. Recent reports proposed beta-TrCP-dependent proteasomal and/or endo-lysosomal degradation of Tetherin as potential mechanisms by which Vpu could down-regulate Tetherin cell-surface expression and antagonize this restriction. In all of these studies, Tetherin degradation did not, however, entirely account for Vpu anti-Tetherin activity.

View Article and Find Full Text PDF

Vpu promotes the efficient release of human immunodeficiency virus type 1 (HIV-1) by overcoming the activity of tetherin, a host cell restriction factor that retains assembled virions at the cell surface. In this study, we analyzed the intracellular localization and trafficking of subtype B Vpu in HIV-1-producing human cells. We found that mutations of conserved positively charged residues (R30 and K31) within the putative overlapping tyrosine- and dileucine-based sorting motifs of the Vpu hinge region affected both the accumulation of the protein in the trans-Golgi network (TGN) and its efficient delivery to late endosomal degradative compartments.

View Article and Find Full Text PDF