Publications by authors named "J Otterbach"

The facilitation of Rydberg excitations in a gas of atoms provides an ideal model system to study epidemic evolution on (dynamic) networks and self-organization of complex systems to the critical point of a nonequilibrium phase transition. Using Monte Carlo simulations and a machine learning algorithm we show that the universality class of this phase transition can be tuned but is robust against decay inherent to the self-organization process. The classes include directed percolation (DP), the most common class in short-range spreading models, and mean-field (MF) behavior, but also different types of anomalous directed percolation (ADP), characterized by rare long-range excitation processes.

View Article and Find Full Text PDF

We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gate set for a linear array of four superconducting qubits. An average process fidelity of ℱ = 93% is estimated for three two-qubit gates via quantum process tomography.

View Article and Find Full Text PDF

We propose a technique for engineering momentum-dependent dissipation in Bose-Einstein condensates with nonlocal interactions. The scheme relies on the use of momentum-dependent dark states in close analogy to velocity-selective coherent population trapping. During the short-time dissipative dynamics, the system is driven into a particular finite-momentum phonon mode, which in real space corresponds to an ordered structure with nonlocal density-density correlations.

View Article and Find Full Text PDF

The coupling of weak light fields to Rydberg states of atoms under conditions of electromagnetically induced transparency leads to the formation of Rydberg polaritons which are quasiparticles with tunable effective mass and nonlocal interactions. Confined to one spatial dimension their low energy physics is that of a moving-frame Luttinger liquid which, due to the nonlocal character of the repulsive interaction, can form a Wigner crystal of individual photons. We calculate the Luttinger K parameter using density-matrix renormalization group simulations and find that under typical slow-light conditions kinetic energy contributions are too strong for crystal formation.

View Article and Find Full Text PDF

We propose and analyze a novel mechanism for long-range spin-spin interactions in diamond nanostructures. The interactions between electronic spins, associated with nitrogen-vacancy centers in diamond, are mediated by their coupling via strain to the vibrational mode of a diamond mechanical nanoresonator. This coupling results in phonon-mediated effective spin-spin interactions that can be used to generate squeezed states of a spin ensemble.

View Article and Find Full Text PDF