Philos Trans R Soc Lond B Biol Sci
November 2024
The predictive processing framework posits that one of the main functions of the brain is to anticipate the incoming information. Internal models facilitate interactions with the world by predicting future states against which actual evidence is compared. The difference between predicted and actual states, the prediction error (PE), signals novel information.
View Article and Find Full Text PDFPerception is an intricate interplay between feedforward visual input and internally generated feedback signals that comprise concurrent contextual and time-distant mnemonic (episodic and semantic) information. Yet, an unresolved question is how the composition of feedback signals changes across the lifespan and to what extent feedback signals undergo age-related dedifferentiation, that is, a decline in neural specificity. Previous research on this topic has focused on feedforward perceptual representation and episodic memory reinstatement, suggesting reduced fidelity of neural representations at the item and category levels.
View Article and Find Full Text PDFDespite the recent popularity of predictive processing models of brain function, the term prediction is often instantiated very differently across studies. These differences in definition can substantially change the type of cognitive or neural operation hypothesised and thus have critical implications for the corresponding behavioural and neural correlates during visual perception. Here, we propose a five-dimensional scheme to characterise different parameters of prediction.
View Article and Find Full Text PDFRecent findings indicate that visual feedback derived from episodic memory can be traced down to the earliest stages of visual processing, whereas feedback stemming from schema-related memories only reach intermediate levels in the visual processing hierarchy. In this opinion piece, we examine these differences in light of the 'what' and 'where' streams of visual perception. We build upon this new framework to propose that the memory deficits observed in aphantasics might be better understood as a difference in high-level feedback processing along the 'what' stream, rather than an episodic memory impairment.
View Article and Find Full Text PDFExpectations can lead to prediction errors of varying degrees depending on the extent to which the information encountered in the environment conforms with prior knowledge. While there is strong evidence on the computationally specific effects of such prediction errors on learning, relatively less evidence is available regarding their effects on episodic memory. Here, we had participants work on a task in which they learned context/object-category associations of different strengths based on the outcomes of their predictions.
View Article and Find Full Text PDF