Introduction: In Michigan, the COVID-19 pandemic severely impacted Black and Latinx communities. These communities experienced higher rates of exposure, hospitalizations, and deaths compared to Whites. We examine the impact of the pandemic and reasons for the higher burden on communities of color from the perspectives of Black and Latinx community members across four Michigan counties and discuss recommendations to better prepare for future public health emergencies.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) readily recover from acute stress, but persistent stress can reduce their viability and long-term potential. Here, we show that the nuclear factor of activated T cells 5 (NFAT5), a transcription modulator of inflammatory responses, protects the HSC pool under stress. NFAT5 restrains HSC differentiation to multipotent progenitors after bone marrow transplantation and bone marrow ablation with ionizing radiation or chemotherapy.
View Article and Find Full Text PDFThe pressure dependence of structural, optical, and magnetic properties of the layered compound CsMnF are explored through first-principles calculations. The structure at ambient pressure does not arise from a Jahn-Teller effect but from an orthorhombic instability on MnF units in the tetragonal parent phase, while there is a 4/ → 4 structural phase transition at = 40 GPa discarding a spin crossover transition from = 2 to = 1. The present results reasonably explain the evolution of spin-allowed d-d transitions under pressure, showing that the first transition undergoes a red-shift under pressure following the orthorhombic distortion in the layer plane.
View Article and Find Full Text PDFSpatial degeneracy is the cause of the complex electronic, geometrical, and magnetic structures found in a number of materials whose more representative example is KCuF. In the literature the properties of this lattice are usually explained through the Kugel--Khomskii model, based on superexchange interactions. Here we provide rigorous theoretical and computational arguments against this view proving that structural and magnetic properties essentially arise from electron-vibration (vibronic) interactions.
View Article and Find Full Text PDFThe Fontan circulation, designed for managing patients with a single functional ventricle, presents challenges in long-term outcomes. Computational methods offer potential solutions, yet their application in cardiology practice remains largely unexplored. Our aim was to assess the ability of a patient-specific, closed-loop, reduced-order blood flow model to simulate pulsatile blood flow in the Fontan circulation.
View Article and Find Full Text PDF