Publications by authors named "J Oleszczuk"

Corn Stunt is an important disease in the Americas due to it high prevalence and the yield reductions that can cause when present. However, changes in the presence of this disease across years hampers the effective identification of resistant genotypes to this disease. To avoid the limitations of phenotypic selection under natural pressure, this research aimed to devise an effective strategy to screen disease-resistant genotypes in the absence of high and constant natural pressures.

View Article and Find Full Text PDF

Fetuses exposed to gestational diabetes mellitus (GDM) have a higher risk of abnormal glucose homeostasis in later life. The molecular mechanisms of this phenomenon are still not fully understood. Fatty acid binding protein 4 (FABP4) appears to be one of the most probable candidates involved in the pathophysiology of GDM.

View Article and Find Full Text PDF

Among the new adipokines, secreted frizzled-related protein 5 (SFRP5) is considered to prevent obesity and insulin resistance. The umbilical cord SFRP5 levels have not yet been investigated. The main aim of the study was to investigate whether the umbilical cord SFRP5 concentrations are altered in term neonates born to mothers with excessive gestational weight gain (EGWG).

View Article and Find Full Text PDF

The exact roles of adipokines in the pathogenesis of type 2 diabetes and obesity are still unclear. The aim of the study was to evaluate fatty acid binding protein 4 (FABP4) concentrations in the serum and urine of women with excessive gestational weight gain (EGWG) and gestational diabetes mellitus (GDM) in the early post-partum period, with reference to their laboratory test results, body composition, and hydration status. The study subjects were divided into three groups: 24 healthy controls, 24 mothers with EGWG, and 22 GDM patients.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is a complex condition that involves a variety of pathological mechanisms, including pancreatic β-cell failure, insulin resistance, and inflammation. There is an increasing body of literature suggesting that these interrelated phenomena may arise from the common mechanism of endoplasmic reticulum (ER) stress. Both obesity-associated nutrient excess and hyperglycemia disturb ER function in protein folding and transport.

View Article and Find Full Text PDF