Publications by authors named "J Ojeda"

The neuromuscular junction (NMJ) is the peripheral synapse controlling the contraction of skeletal muscle fibers to allow the coordinated movement of many organisms. At the NMJ, a presynaptic motor axon terminal contacts a muscle postsynaptic domain and is covered by terminal Schwann cells. The integrity and function of the NMJ is compromised under several conditions, including aging, neuromuscular diseases, and traumatic injuries.

View Article and Find Full Text PDF

Background: Vitamin C plays key roles in cellular homeostasis, functioning as a potent antioxidant and a positive regulator of cell differentiation. In skeletal muscle, the vitamin C/sodium co-transporter SVCT2 is preferentially expressed in oxidative slow fibers. SVCT2 is up-regulated during the early fusion of primary myoblasts and decreases during initial myotube growth, indicating the relevance of vitamin C uptake via SVCT2 for early skeletal muscle differentiation and fiber-type definition.

View Article and Find Full Text PDF

Background: Adolescence is a critical developmental period for the study of anorexia nervosa (AN), an illness characterized by extreme restriction of food intake. The maturation of the reward system during adolescence combined with recent neurobiological models of AN led to the hypothesis that early on in illness, restrictive food choices would be associated with activity in nucleus accumbens reward regions, rather than caudate regions identified among adults with AN.

Methods: Healthy adolescents (HC, n = 41) and adolescents with AN or atypical AN (atypAN, n = 76) completed a Food Choice Task during fMRI scanning.

View Article and Find Full Text PDF

Objective: This study investigated the effectiveness and tolerability of brivaracetam (BRV) monotherapy in a large series of patients with epilepsy.

Method: This was a multicenter, retrospective, observational, non-interventional study in 24 hospitals across Spain. Patients aged ≥18 years who started on BRV monotherapy, either as first-line or following conversion, at least 1 year before database closure were included.

View Article and Find Full Text PDF

Density distribution in bones can be estimated using bone remodelling models (BRM) and applying daily normal loads to assess the stress/strain state to which the bone is subjected. These models locally relate a certain mechanical stimulus, derived from the stress/strain state, directly to bone density or to its variation over time. The background of this idea is Frost's Mechanostat Theory, which states that overloading states tend to increase bone density and disuse states tend to decrease it.

View Article and Find Full Text PDF