Publications by authors named "J Oberdisse"

Mesoporous systems are ubiquitous in membrane science and applications due to their high internal surface area and tunable pore size. A new synthesis pathway of hydrolytic ionosilica films with mesopores formed by ionic liquid (IL) templating is proposed and compared with the traditional non-hydrolytic strategy. For both pathways, the multi-scale formation of pores has been studied as a function of IL content, combining the results of thermogravimetric analysis (TGA), nitrogen sorption, and small-angle X-ray scattering (SAXS).

View Article and Find Full Text PDF

The formation and properties of smart (stimuli-responsive) membranes are reviewed, with a special focus on temperature and pH triggering of gating to water, ions, polymers, nanoparticles, or other molecules of interest. The review is organized in two parts, starting with all-smart membranes based on intrinsically smart materials, in particular of the poly(-isopropylacrylamide) family and similar polymers. The key steps of membrane fabrication are discussed, namely the deposition into thin films, functionalization of pores, and the secondary crosslinking of pre-existing microgel particles into membranes.

View Article and Find Full Text PDF

Small-angle scattering is a commonly used tool to analyze the dispersion of nanoparticles in all kinds of matrices. Besides some obvious cases, the associated structure factor is often complex and cannot be reduced to a simple interparticle interaction, like excluded volume only. In recent experiments, we have encountered a surprising absence of structure factors (S(q) = 1) in scattering from rather concentrated polymer nanocomposites (Genix et al.

View Article and Find Full Text PDF

Both the dispersion state of nanoparticles (NPs) within polymer nanocomposites (PNCs) and the dynamical state of the polymer altered by the presence of the NP/polymer interfaces have a strong impact on the macroscopic properties of PNCs. In particular, mechanical properties are strongly affected by percolation of hard phases, which may be NP networks, dynamically modified polymer regions, or combinations of both. In this article, the impact on dispersion and dynamics of surface modification of the NPs by short monomethoxysilanes with eight carbons in the alkyl part (C) is studied.

View Article and Find Full Text PDF

Fundamental understanding of the macroscopic properties of polymer nanocomposites (PNCs) remains difficult due to the complex interplay of microscopic dynamics and structure, namely interfacial layer relaxations and three-dimensional nanoparticle (NP) arrangements. The effect of surface modification by alkyl methoxysilanes at different grafting densities has been studied in PNCs made of poly(2-vinylpyridine) and spherical 20 nm silica NPs. The segmental dynamics has been probed by broadband dielectric spectroscopy and the filler structure by small-angle X-ray scattering and reverse Monte Carlo simulations.

View Article and Find Full Text PDF