Background: Though overexpression of epidermal growth factor receptor (EGFR) in several forms of cancer is considered to be an important prognostic biomarker related to poor prognosis, clear correlations between biomarker assays and patient management have been difficult to establish. Here, we utilize a targeting directly followed by a non-targeting tracer-based positron emission tomography (PET) method to examine some of the aspects of determining specific EGFR binding in tumors.
Methods: The EGFR-binding Affibody molecule ZEGFR:2377 and its size-matched non-binding control ZTaq:3638 were recombinantly fused with a C-terminal selenocysteine-containing Sel-tag (ZEGFR:2377-ST and ZTaq:3638-ST).
Background: Vascular endothelial growth factor receptor 2 (VEGFR2) is a crucial mediator of tumour angiogenesis. High expression levels of the receptor have been correlated to poor prognosis in cancer patients. Reliable imaging biomarkers for stratifying patients for anti-angiogenic therapy could therefore be valuable for increasing treatment success rates.
View Article and Find Full Text PDFUnlabelled: Several tracers have been evaluated as probes for noninvasive epidermal growth factor receptor (EGFR) quantification with PET. One of the most promising candidates is the (11)C-labeled analog of the EGFR tyrosine kinase inhibitor PD153035. However, previous in vitro studies indicated extensive metabolism of the tracer, which could be disadvantageous for the assessment of receptor density in vivo.
View Article and Find Full Text PDFBackground: Radiolabeled annexin A5 (AnxA5) is widely used for detecting phosphatidylserine exposed on cell surfaces during apoptosis. We describe here a new method for labeling AnxA5 and a size-matched control protein with short-lived carbon-11, for probing the specificity of in vivo cell death monitoring using positron emission tomography (PET) imaging.
Methods: AnxA5 and the control protein were recombinantly expressed with a C-terminal "Sel-tag", the tetrapeptide -Gly-Cys-Sec-Gly-COOH.
Unlabelled: A rapid, reliable method for distinguishing tumors or metastases that overexpress human epidermal growth factor receptor 2 (HER2) from those that do not is highly desired for individualizing therapy and predicting prognoses. In vivo imaging methods are available but not yet in clinical practice; new methodologies improving speed, sensitivity, and specificity are required.
Methods: A HER2-binding Affibody molecule, Z(HER2:342), was recombinantly fused with a C-terminal selenocysteine-containing tetrapeptide Sel-tag, allowing site-specific labeling with either (11)C or (68)Ga, followed by biodistribution studies with small-animal PET.