Publications by authors named "J O Piontek"

Coastal ecosystems are affected by a multitude of anthropogenic stressors. As the Baltic Sea ecosystems rank among the most altered marine ecosystems worldwide, they represent ideal model regions to study ecosystem responses to anthropogenic pressures. Our statistical analysis of data including dissolved organic carbon and nitrogen, as well as bacterial abundance and -biomass production from the time-series station Boknis Eck in the southwestern Baltic Sea reveals that bacterial biomass production intensifies towards summer following the phytoplankton spring bloom.

View Article and Find Full Text PDF

Tight junctions play a pivotal role in the functional integrity of the human body by forming barriers that compartmentalize tissues and protect the body from external threats. Essential components of tight junctions are the transmembrane claudin proteins, which can polymerize into tight junction strands and meshworks. This study delves into the structural determinants of claudin polymerization, using the close homology yet strong difference in polymerization capacity between claudin-3 and claudin-4.

View Article and Find Full Text PDF

Heterotrophic microbial communities play a significant role in driving carbon fluxes in marine ecosystems. Despite their importance, these communities remain understudied in remote polar oceans, which are known for their substantial contribution to the biological drawdown of atmospheric carbon dioxide. Our research focused on understanding the environmental factors and genetic makeup of key bacterial players involved in carbon remineralization in the Weddell Sea, including its coastal polynyas.

View Article and Find Full Text PDF

Claudin polymers constitute the tight junction (TJ) backbone that forms paracellular barriers, at least for bigger solutes. While some claudins also seal the barrier for small electrolytes, others form ion channels. For cation-selective claudin-15 and claudin-10b, structural models of channels embedded in homo-polymeric strands have been suggested.

View Article and Find Full Text PDF

The neural tube, the embryonic precursor to the brain and spinal cord, begins as a flat sheet of epithelial cells, divided into non-neural and neural ectoderm. Proper neural tube closure requires that the edges of the neural ectoderm, the neural folds, to elevate upwards and fuse along the dorsal midline of the embryo. We have previously shown that members of the claudin protein family are required for the early phases of chick neural tube closure.

View Article and Find Full Text PDF