Publications by authors named "J Netz"

We propose a machine learning method to model molecular tensorial quantities, namely, the magnetic anisotropy tensor, based on the Gaussian moment neural network approach. We demonstrate that the proposed methodology can achieve an accuracy of 0.3-0.

View Article and Find Full Text PDF

We present an extensive study of the performance of mean-field approximations to the spin-orbit operators on realistic molecular systems, as widely used in applications like single-molecule magnets, molecular quantum bits, and molecular spintronic devices. The test systems feature a 3d transition-metal center ion (V, Cr, Mn, Fe, Co, and Ni) in various coordinations and a multitude of energetically close-lying open-shell configurations that can couple via the spin-orbit operator. We performed complete active space spin-orbit configuration interaction calculations and compared the full two-electron Breit-Pauli spin-orbit operator to different approximations: the one-center approximation, the spin-orbit mean-field approach with electron densities from different state-averaging procedures, and the atomic mean-field integral approximation.

View Article and Find Full Text PDF

Background: The objective of this study was to determine if the laryngeal twitch response, when compared to neuromonitoring, can predict postoperative vocal cord function and can thus be used in case of technical failure of the EMG-recording electrode.

Methods: A total of 640 nerves at risk were included in this study based on a prospective protocol. The laryngeal twitch response and the EMG-records were compared with the results of the postoperative laryngoscopy.

View Article and Find Full Text PDF

We present the in-depth determination of the magnetic properties and electronic structure of the luminescent and volatile dysprosium-based single molecule magnet [Dy(bpm)(fod)] (Hfod = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione, bpm = 2,2'-bipyrimidine). calculations were used to obtain a global picture of the electronic structure and to predict possible single molecule magnet behaviour, confirmed by experiments. The orientation of the susceptibility tensor was determined by means of cantilever torque magnetometry.

View Article and Find Full Text PDF