Atomically thin semiconductors, encompassing both 2D materials and quantum wells, exhibit a pronounced enhancement of excitonic effects due to geometric confinement. Consequently, these materials have become foundational platforms for the exploration and utilization of excitons. Recent ab initio studies have demonstrated that phonons can substantially screen electron-hole interactions in bulk semiconductors and strongly modify the properties of excitons.
View Article and Find Full Text PDFrVSVΔG-ZEBOV-GP and Ad26.ZEBOV, MVA-BN-Filo are WHO-prequalified vaccination regimens against Ebola virus disease (EVD). Challenges associated with measuring long-term clinical protection warrant the evaluation of immune response kinetics after vaccination.
View Article and Find Full Text PDFEquivariant neural networks have emerged as prominent models in advancing the construction of interatomic potentials due to their remarkable data efficiency and generalization capabilities for out-of-distribution data. Here, we expand the utility of these networks to the prediction of crystal structures consisting of organic molecules. Traditional methods for computing crystal structure properties, such as plane-wave quantum chemical methods based on density functional theory (DFT), are prohibitively resource-intensive, often necessitating compromises in accuracy and the choice of exchange-correlation functional.
View Article and Find Full Text PDF