This paper presents a non-nulling absolute interferometric method for fast and full-area measurement of aspheric surfaces without the necessity of any mechanical movement. Several single frequency laser diodes with some degree of laser tunability are used to achieve an absolute interferometric measurement. The virtual interconnection of three different wavelengths makes it possible to accurately measure the geometrical path difference between the measured aspheric surface and the reference Fizeau surface independently for each pixel of the camera sensor.
View Article and Find Full Text PDFA technique for measurement of the thickness of optical elements using absolute wavelength scanning interferometry is presented in this paper. To achieve high-grade optical components and systems, the thickness of both planar and non-planar optical components must be measured with an accuracy of a few micrometers. The proposed technique is based on the Fizeau interferometer and interconnects data from three different tunable laser diodes yielding a long effective wavelength range and thus low measurement uncertainty.
View Article and Find Full Text PDFThis paper presents a new method for radius of curvature measurement by interferometers. The radius measurement is carried out directly in the interferometer confocal position without the need for a specific hardware and thus allows us to measure a much more diverse range of optical surfaces than standard methods. The method is based on measuring a number of phase maps and displacements at several steps through the confocal null position.
View Article and Find Full Text PDFA novel radius of the curvature measurement method for optical spherical surfaces using absolute interferometry is proposed. A measurement setup is designed and built around a common-path Fizeau interferometer. The cavity length (volume of air between reference and tested surfaces) can be measured by the absolute wavelength tuning interferometry.
View Article and Find Full Text PDFIn this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match.
View Article and Find Full Text PDF