Publications by authors named "J N Wessel"

The ability to stop already-initiated actions is paramount to adaptive behavior. In psychology and neuroscience alike, action-stopping is a popular model behavior to probe inhibitory control - the underlying cognitive control process that is purportedly vital to regulating thoughts and actions. Starting with seminal work in the 1990s, the frontocentral stop-signal P3 - an event-related potential derived from scalp EEG - has been proposed as a neurophysiological index of inhibitory control during action-stopping.

View Article and Find Full Text PDF

Inhibitory control is a fundamental mechanism underlying flexible behavior and features in theories across many areas of cognitive and psychological science. However, whereas many theories implicitly or explicitly assume that inhibitory control is a domain-general process, the vast majority of neuroscientific work has hitherto focused on individual domains, such as motor, mnemonic, or attentional inhibition. Here, we attempt to close this gap by highlighting recent work that demonstrates shared neuroanatomical and neurophysiological signatures of inhibitory control across domains.

View Article and Find Full Text PDF

Language processing is incremental. As language signals-for example, words in a sentence-unfold, humans predict and activate likely upcoming input to facilitate comprehension. Prediction not only accelerates understanding but also prompts reassessment in the case of prediction error, fostering learning and refining comprehension skills.

View Article and Find Full Text PDF

Stopping initiated actions is fundamental to adaptive behavior. Longstanding, single-process accounts of action-stopping have been challenged by recent, two-process, "pause-then-cancel" models. These models propose that action-stopping involves two inhibitory processes: ) a fast Pause process, which broadly suppresses the motor system as the result of detecting any salient event, and ) a slower Cancel process, which involves motor suppression specific to the cancelled action.

View Article and Find Full Text PDF
Article Synopsis
  • Genome-wide association studies have found numerous genetic loci linked to glycemic traits, but connecting these loci to specific genes and biological pathways remains a challenge.
  • Researchers conducted meta-analyses of exome-array studies across four glycemic traits, analyzing data from over 144,000 participants, which led to the identification of coding variant associations in more than 60 genes.
  • The study revealed significant pathways related to insulin secretion, zinc transport, and fatty acid metabolism, enhancing understanding of glycemic regulation and making data available for further research.
View Article and Find Full Text PDF