Nanocarriers (NCs) have emerged as a revolutionary approach in targeted drug delivery, promising to enhance drug efficacy and reduce toxicity through precise targeting and controlled release mechanisms. Despite their potential, the clinical adoption of NCs is hindered by challenges in their physicochemical characterization, essential for ensuring drug safety, efficacy, and quality control. Traditional characterization methods, such as dynamic light scattering and nanoparticle tracking analysis, offer limited insights, primarily focusing on particle size and concentration, while techniques like high-performance liquid chromatography and mass spectrometry are hampered by extensive sample preparation, high costs, and potential sample degradation.
View Article and Find Full Text PDFFluorescent labels, commonly used in highly sensitive analytical techniques for detecting and tracking biomolecules in critical fields like cellular biology, medicine, medicinal chemistry, and environmental science, are currently too expensive for routine use in standard applications, with most exhibiting small Stokes shifts. This limitation underscores the potential of 4-diethylaminobenzaldehyde derivatives as a cost-effective alternative for developing new, bright fluorophores with larger Stokes shifts. In this work, using 4-diethylaminobenzaldehyde as starting material, we developed a simple, cost-effective, and efficient synthetic strategy to produce new affordable small molecules as effective fluorescent labels for biomolecules.
View Article and Find Full Text PDFObjective: To analyze in-hospital and 1-year morbidity and mortality associated with acute gastrointestinal dysfunction in critically ill patients with COVID-19 via a prespecified scoring system.
Methods: Between March and July 2020, consecutive hospitalized patients with COVID-19 from a single institution were retrospectively analyzed by medical chart review. Only those who remained in the intensive care unit for more than 24 hours were included.