Publications by authors named "J N M Heersche"

Objective: The number of patients with postmenopausal osteoporosis receiving dental implants because of edentulism is increasing. Since osseointegration around implants requires formation and maintenance of new bone, knowledge of how ovariectomy (OVX) affects turnover of mandibular and maxillary bone is required. In the present study, we investigated the effects of OVX on turnover of alveolar bone in the healed extraction socket of the rat left mandibular incisor.

View Article and Find Full Text PDF

Osteoclasts are bone-resorbing cells formed by fusion of mononuclear precursors. The matrix proteins, fibronectin (FN), vitronectin (VN), and osteopontin (OPN) are implicated in joint destruction and interact with osteoclasts mainly through integrins. To assess the effects of these matrix proteins on osteoclast formation and activity, we used RAW 264.

View Article and Find Full Text PDF

Osteoclasts are signaled by the bone matrix proteins fibronectin (FN), vitronectin (VN), and osteopontin (OPN) via integrins. To perform their resorptive function, osteoclasts cycle between compact (polarized), spread (non-resorbing) and migratory morphologies. Here we investigate the effects of matrix proteins on osteoclast morphology and how those effects are mediated using RAW 264.

View Article and Find Full Text PDF

Large osteoclasts (10+ nuclei), predominant in rheumatoid arthritis and periodontal disease, have higher expression of proteases and activating receptors and also have increased resorptive activity when compared to small (2-5 nuclei) osteoclasts. We hypothesized that large and small osteoclasts activate different signaling pathways. A Signal Transduction Pathway Finder Array was used to compare gene expression of large and small osteoclasts in RAW 264.

View Article and Find Full Text PDF

Interleukin 1 (IL-1) is a proinflammatory cytokine upregulated in conditions such as rheumatoid arthritis and periodontal disease. Both isoforms, IL-1alpha and IL-1beta, have been shown to activate osteoclasts (OCs), the cells responsible for resorbing bone. Inflammatory conditions are also characterized by increased bone loss and by the presence of large OCs (10+ nuclei).

View Article and Find Full Text PDF